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STRESS FUNCTIONS FOR A COSSERAT CONTINUUM

R. D. MINDLIN

Department of Civil Engineering, Columbia University, New York, N.Y.

Abstract—In this paper, a complete solution, in terms of stress functions analogous to the Papkovitch functions
of classical elasticity, is obtained for the linear equations of an isotropic, elastic, Cosserat continuum. The
special solutions for the concentrated force and couple are also given.

EQUATIONS OF A COSSERAT CONTINUUM

AT EACH point of a Cosserat continuum [1] there is a micro-structure which can rotate
with respect to the surrounding medium. In the linear, elastic case, the potential energy-
density may be expressed as a quadratic function of the classical small strain, the difference
between the classical small rotation and the rotation of the micro-structure, and the
gradient of the rotation of the micro-structure. Thus, employing the notations

CA, .
Aj’isﬁx‘:’ I = 1,2,3,
A = 34— A4 ) = — Ay,

By, = %(Bij_Bji) = — B,

we may write, for the potential energy-density,

W = Wiy, vujp» K ()
where
&y = 2u;+u ) = e, (2a)
Y = U~V = — T (2b)
Kiga = Ying = —Kigps (2¢)

in which the u; are the components of displacement and the ¥y;;, are the components of
rotation of the micro-structure.
We adopt the definitions

oW

Ty = 2e, = Tji> (3a)
W

OLj = Fin = =0y (3b)
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ow
A = Hikgy (3¢)

Hi = ki
il

Here 7; is the classical (Cauchy) stress and i, is the Cosserat couple-stress. The Cosserats
considered oy;; to be the antisymmetric part of an asymmetric tensor whose symmetric
part is the Cauchy stress. However, if the Cosserat theory is extended [2] to include strain
of the micro-structure, as well as rotation, o;;; appears naturally as the antisymmetric
part of another tensor. This distinction is retained here.

The variation of Wis

OW = 1,08+ o dvun+ MamdKin»

= [(ti;+ opou;] i — (T4 01i50), 1045 — 6100 + (Mipa®W ) : — Bigjn, 0¥ Lin

and, with the divergence theorem,

v S
4)
- J [(zi;+ o ou; + (Ui, + OOV 5] dV,
v

where the n, are the components of the unit outward normal to the surface S of a
volume V.
A principle of virtual work is expressed by

v S 1 4

where t; is the surface traction, Ty, is the surface couple, f; is the body force and @y,
is the body couple.

Upon equating coefficients of like independent variations, du; and 6y, in the surface
and volume integrals in (4) and (5), we arrive at the Cosserat stress-equations of
equilibrium [1]

(ty+oupit+f; =0, (6a)
Hig,i + o+ P = 0, (6b)

and the boundary conditions
t; = nfty+oup) (Ta)

T = Mt (7b)

We shall consider only isotropic materials without initial stress. Then the potential
energy-density must be a linear function of such product pairs of ¢;;, y;; and kg as
are scalars. There are two such for ¢;; (¢;¢;; and g;5¢;;), one for y; (77, and three for
Kiping (KigagK jgns KipkgKigjng and Ky jiay) @and no others. Hence*

1
W = 3he;e;;+ 1e; 8+ Bynyin + &1 KK jpen + E2KignKipa + €Ki iy @)
* The relations between the constants § and g; in (8} and those in [2] are
B=3br—b3)  w = Hao—ays)
@ = a;— 303 —}as,

= L 1
Ay = dy 301430 5.
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Then (3) become

Ty = AdyjEu+ 218, (9a)
Oij) = zﬁ?[ijp (9b)
Higig = (K jpdin + KapenGi) + 202Ky + X3 (g + K jprap)- (9¢)

The forty-two equations (2), (6) and (9) constitute one form of the equations of the
linear theory of equilibrium of an isotropic, elastic, Cosserat continuum. As noted pre-
viously, these equations have been amplified, in another paper [2], to include a homo-
geneous strain of the micro-structure. In [2], the complete deformation of the micro-
structure is represented by an asymmetric tensor y;;. To reduce to the Cosserat continuum,
it is only necessary to set the symmetric part of y;; equal to zero.

Passage to a limit, as f— o0, y;; — 0, reduces the Cosserat continuum to one
without micro-structure but with its potential energy-density dependent on strain and
gradient of rotation. The resulting equations are those considered in [3].

Upon substituting (2) in (9) and the result in (6), we find the following equations
on u; and Y-

(A+p—PBu; ji+(u+ Bu; j;— 2Py, + i =0, (10a)
(g + o3} Wikig, i+ Vg, ) + 2008 gy, o — 288 g+ Bluj i — u; ;) +Dpyy = 0. (10b)

STRESS FUNCTIONS

For the purpose of this section, it is convenient to express (10) in an invariant form.
Let u and f be the vectors with components u; and f;; let ¢4, ®* and I be the dyadics

with components ¥;;, ®;; and J;;; and write ®* = —JIxc, ie. in terms of a body
couple vector ¢. Then (10) become
(A+p—PBVV - u+(u+pB\Vu—2pV -y +f = 0, (11a)

(ot +at3)(V - YAV + V4 - V) + 20, V24 — 284 + f(Vu—uV) - xc = 0. (11b)

A proof will now be given that any solution (u, y*) of (11), in a region V bounded
by a surface S, can be expressed as

u=VxK+(1-EV)B-12VV-B)— 4k, — BV)V[r- (1-2V)B+B,], (12a)

V4 = — U x[VV(r-K+K,)+2V xB], (12b)
where
w(1-BVHV2B = —f—L(1+p/BV x¢, (13a)
UVZBy =+ [f+H1+u/pV x ¢}, (13b)
28VK = ¢, (13¢)
20(1 - BV3)V2K, = 412V - c—r - (1 - 2V?)c, (13d)

ky = (24 w/2+2p),
B = (u+ P20, — oty —a3)/2p,
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=0,/ 15 = (20,—0;—03)/p,
and r is the position vector.
Consider a field point P(x, y, z) and a source point Q(¢, 4, {) and define
4nU, = —j riugdVy,
14
where dl, = d¢ dnd{ and r, is the distance between P and Q.
Then V2U =u, or
u=VV-U-VxVxU. (14)
Define
¢=V-U, = —-VxU, (V-H = 0)
Substitution of these in (14) produces Helmholtz’s resolution :
u=Vep+VxH, V:H=0 (15)

Similarly [4] a scalar function y and a vector function G can be defined in terms
of ¥ in such a way that

Yt = —H x(Vy—-V?3G), V-G=0. (16)

The substitution of (15) and (16) into (11) converts the latter to*
V(2 + 2V +V x [(u+ BIH - BG]} +1 = 0, (17a)
B(1—BVVy+ BVIH—(1-2V*)G]—4c = 0. {(17b)

From (17b),
BVV xH = (1 -BEVHVVx G +1iV xe.
Upon substituting this expression for V2V x H into (17a), we find

uV2kVo+(1—BVHW xG] = —f—H1+p/f)V xc, (18)
where k = (A+2u)/u.
Now define
4nl3Bp = J rite U[kVe (1 —12VHV xGlodV,.
14
Then
(1-BVHB = kVo+(1-VIV <G (19)
and, from (18) and (19),
w1 —BVHV2B = —f— Y1 +u/pV xc. (20)
Also, from (19),
(1-BVHV-B = kV?p. (21)
Define
2ko* = - (1-12VHB. (22)

* Note that (17) are what (27) of Ref. [4] reduce to when { = .
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Then, using (20) and (21), we find
2kuV2@* = 2kuVi@—r- [f+31+p/PV xc].
With the definition B, = 2k(¢ — ¢*), we have, from (23) and (22),
1V2By = r- [f+3(1+p/B)V x c],
2k =r-(1-13V*)B' +B,.
Define
D = B'-[/}VV-B' —kVo.

By (21), V- D = 0. Hence there exists a function G* such that VxG* = D, or

VxG* =B —-12VV-B —kVep;
whence, by (21) and (19),
(1-BVHVx G* = (1 -1V?)V x G*,
With the definition B” = Vx G—V x G*, we have
(1-BVHB" =0, V:B"=0
and, from (26) and (295),

VxG = B'+B —2VV-B —1V[r- (1 - 2V?)B + B,].

Define B = B'+B”. Then, in view of (27), (28) may be written as
VxG =B-1IVV:-B—1V[r-(1-I/{V?)B+B,],
while (20) becomes
p(1-13V3VB = —f—41+p/p)Vxec
and (25) becomes

2ke =r-(1—12V*)B+ B,.
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(23)

(24)
(25)

(29)

(30)

(1)

From (29), VxVxG =V xB; but VxVxG = VV-G~-V?G and, by (16), V-G = 0.

Hence
V3G = —VxB.
Now define
dryk = —f ri ' xgdVy,
| 4
so that

1=V~
Substitution of (33) into (17b) yields
V(1 —-BV)Vy* + H—(1-12V3)G]—1c = 0.

Define
K = (1-1V)Vy*+H-(1-12V?)G.

32)

(33)

(34)
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Then
2BVK = ¢, (35)
V- K = (1-BV)V2y*, (36)
VxK =VxH-(1-3V)VxG. (37)
Define
** =3r-K (38)
and find, using {35} and (36),
4p(1 - BV (** —y*) = —4l3V-c+r-(1-13V)e. (39)
Thus, with the definition
Ko = 20¢* = **), (40)
we have, from (39),
2p(1 - 3V)V3K, = 413V - ¢ —r1 - (1 - 3V3)e. 41)
Finally, from (33), (40) and (38),
x = 3Vir K+ Ko) 42)

The expression (12a) for u is given by (15) with ¢ expressed in terms of B and B,
by (31), Vx H expressed in terms of K and Vx G by (37) and V x G expressed in terms
of B and B, by (29). The expression (12b) for y* is given by (16) with y expressed in terms
of K and K, by (42) and V>G expressed in terms of VxB by (32). Equations (13) are,
respectively, (30), (24), (35) and (41). These equations are elliptic because positive definite-
ness of the potential energy-density (8) requires

u>0, >0, o, >0, 20, — oty —~ 03 > 0,

and, hence, I# and I3 are positive.

CONCENTRATED FORCE AND COUPLE

For the problem of a concentrated force in an infinite region, ¢ = 0 and we may
take K = 0, K, = 0. Then of the four equations (13), there remain only the following
on B and By:

p(1—13VHVIB = —f,
uV2B, =r-f.
These are the same as the equations encountered in [3] except for the replacement of I,
by another constant. Hence, the solution for a concentrated force P at the origin in an
infinite region has the same form as that found in [3], namely:

B l—e="M), By =0.

zz;w—r(
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If body couples are present, but body forces are absent, the equations (13) on the
stress functions are

21— BVAVB = — (14 1/B)V x ¢,
2uV2By = (1+u/B)r-Vxe,
2BVK = c,
281~ BVAV2K,, = 412V - c—r - (1 — BV2)e.

These have the same forms as equations encountered in the body couple problem con-
sidered in [3] and the body force problem considered in [2]. The same methods of
integration employed in those papers may be used here for the case of a concentrated
couple C at the origin of an infinite region. After noting that, in [2], the right hand side
of (48) should be multiplied by 1/2, we find:

B _u+ﬁCxV(1~exp(—r/ll>>’

8nup r r
By, =0, K= "gﬁ’
Ko = —Z% C-Ve_ip(_:r_ﬂ”).
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Zusammenfassung—In diesem Beitrag werden die Lineargleichungen eines isotropen, elastischen Cosserat
Kontinuums vollstindig geldst, und zwar werden diese in Spannungsfunktionen, welche den Papkovitsch
Funktionen der klassischen Elastizitédtstheorie analog sind, ausgedriickt. Speziallsungen fiir eine konzentrierte
Kraft und ein Kriftepaar werden ebenfalls angegeben.

AGcTpakT—B HacTosuedt Gymare BBIBOQUTCH MNONHOE pELIEHME, B TEPMHHaX OYHKUMH HanpskeHus,
aHanoruyHbeix GyHkuMaAM IlankoBHYa K/IACCHYECKOH YNPYroCTH, IV JIMHEHHBIX YPaBHEHHH H30TPOIHOTO
ynpyroro koutHHyyma Koccepa.

JaroTca Takke CnenManbHble PeLUeHUs A1 COCPEAOTOYEHHOIO YCHIMS M AJIs Naphi CHIT.



